1. Tidwell JL, Seaman SA, Vanderploeg EJ, Tom S. In vitro and in vivo characterization of OSTEOAMP allogeneic morphogenetic proteins. Data on file, Bioventus white paper; 2017.
  2. Roh JS, Yeung CA, Field JS, McClellan RT. Allogeneic morphogenetic protein vs. recombinant human bone morphogenetic protein-2 in lumbar interbody fusion procedures: a radiographic and economic analysis. J Orthop Surg Res. 2013;8:49. doi:10.1186/1749-799X-8-49.
  3. Field J, Yeung C, Roh J. Clinical evaluation of allogeneic growth factor in cervical spine fusion. J Spine. 2014;3(158) doi:10.4172/2165-7939.1000158.
  4. Data on File.
  5. Scarpone MA, Kuebler D, Harrell DB. Marrow Cellution Bone Marrow Aspiration System and Related Concentrations of Stem and Progenitor Cells. (White Paper). Avon, MA: Ranfac Corporation Website. Accessed January 5, 2016.
  6. Yang SS. Compositions and Methods to Repair Osseous Defects. US Patent 6,228,386 (2001).
  7. Hench LL. The story of Bioglass. J Mater Sci Mater Med. 2006;17(11):967-78.
  8. Gerhardt LC, Boccaccini AR. Bioactive glass and glass-ceramic scaffolds for one tissue engineering. Materials. 2010;3(7):3867-910.
  9. Xynos ID, Edgar AJ, Buttery LDK, Hench LL, Polak JM. Gene-expression profiling of human osteoblasts following treatment with the ionic products of Bioglass 45S5 dissolution. J Biomed Mater Res. 2001;55(2):151-7.
  10. Daculsi G, Layrolle P. Osteoinductive properties of micro macroporous biphasic calcium phosphate bioceramics. Key Eng. Mater. 2004;254-256:1005-1008.
  11. Daculsi G. Jegoux, Layrolle P. The micro macroporous biphasic calcium phosphate concept for bone regeneration and tissue engineering. Advanced Biomaterials: Fundamentals, Processing & Applications. 2009;Section 1,Chapter 4:101-142.
  12. Data on file. RPT-000541 BioStructures Technical Whitepapers.
  13. Garrido CA, Lobo SE, Turíbio FM, Legeros RZ. Biphasic calcium phosphate bioceramics for orthopaedic reconstructions: clinical outcomes. Int J Biomater. 2011;2011:129727.
  14. Cavagna R, Daculsi G, Bouler JM. Macroporous Calcium Phosphate Ceramic: A Prospective Study of 106 Cases in Lumbar Spinal Fusion. J Long-Term Effects Med Implants, 1999;9:403-12.
  15. Betz RR. Limitations of Autograft and Allograft: New Synthetic Solutions. Orthopedics 2002;25(5):561-70.
  16. Pettine KA, Murphy MB, Suzuki RK, Sand TT. Percutaneous injection of autologous bone marrow concentrate cells significantly reduces lumbar discogenic pain through 12 months. Stem Cells 2015;333(1)46-56.
  17. Hegde V, Shonuga O, Ellis S, et al. A prospective comparison of 3 approved systems for autologous bone marrow concentration demonstrated nonequivalency in progenitor cell number and concentration. J Orthop Trauma 2014;28(10):591-8.
  18. Data on file. RPT-000828 – OSTEOMATRIX+ Fluid Uptake Assessment.
  19. Daculsi G, Laboux O, Malard O, Weiss P. Current state of the art of biphasic calcium phosphate bioceramics. J Mater Sci Mater Med 2003;14(3):195-200.
  20. LeGeros RZ, Lin S, Rohanizadeh R, Mijares D, LeGeros JP. Biphasic calcium phosphate bioceramics: preparation, properties and applications. J Mater Sci Mater Med. 2003;14(3):201-9.
  21. Fellah BH, Gauthier O, Weiss P, Chappard D, Layrolle P. Osteogenicity of biphasic calcium phosphate ceramics and bone autograft in a goat model. Biomaterials.2008;29(9):1177-88.
  22. Data on file. RPT-000541 BioStructures Technical Whitepapers.
  23. Data on file RPT-000858. OSTEOAMP Absorption Data.
  24. Roberts T T, Rosenbaum A J. Bone grafts, bone substitutes and orthobiologics; the bridge between basic science and clinical advancements in fracture healing. Organogenesis. 2012;8(4):114-24. doi: 10.4161/org.23306.
  25. Hankenson KD, Dishowitz M, Gray C, Schenker M. Angiogenesis in bone regeneration. Injury. 2011;42(6):556-61. doi: 10.1016/j.injury.2011.03.035.
  26. Bioventus LLC. Data on file. RPT-000962. Osteoblast Differentiation Study.
  27. Brunelle JE, Seaman SA, Davis CT, Tom S. In vitro and in vivo characterization of SIGNAFUSE Bioactive Bone Graft. Data on file. Bioventus white paper, 2017.
  28. Ransford AO, Morley T, Edgar MA, et al. Synthetic porous ceramic compared with autograft in scoliosis surgery. A prospective, randomized study of 341 patients. J Bone Joint Surg Br. 1998;80-B:13-8. doi: 10.1302/0301-620x.80b1.7276
  29. Delécrin J, Takahashi S, Gouin F, Passuti N. A synthetic porous ceramic as a bone graft substitute in the surgical management of scoliosis: a prospective, randomized study. Spine (Phila Pa 1976). 2000;25(5):563-9. doi: 10.1097/00007632-200003010-00006
  30. Pascal-Moussellard H, Catonné Y, Robert R, Daculsi G. Anterior cervical fusion with PEEK cages: clinical results of a prospective, comparative, multicenter and randomized study comparing iliac graft and a macroporous biphasic calcium phosphate. Spine J. 2006;6(suppl 5):136S. Abstract P109. doi: 10.1016/j.spinee.2006.06.318
  31. Fredericks D, Peterson EB, Watson N, Grosland N, Gibson-Corley K, Smucker J. Comparison of two synthetic bone graft products in a rabbit posterolateral fusion model. Iowa Orthop J. 2016;36:167-73
  32. Yeung C, Field J, Roh J. Clinical validation of allogeneic morphogenetic protein: donor intervariability, terminal irradiation and age ofproduct is not clinically relevant. J Spine. 2014;3(3):1000173. doi:10.4172/2165-7939.1000173
  33. DeVries JG, Scharer B. The use of allograft bone morphogenetic protein in foot and ankle arthrodesis. J Orthop Res Physiother. 2016;2(1):100023. doi:10.24966/ orp-2052/100023
  34. DeVries JG, Scharer B. Comparison and use of allograft bone morphogenetic protein versus other materials in ankle and hindfoot fusions. J Foot Ankle Surg. 2018;57(4):707-11. doi:10.1053/j.jfas.2017.12.010
  35. U.S. National Library of Medicine. A prospective study of instrumented, posterolateral lumbar fusions (PLF) with OsteoAMP®. Last updated November 5, 2020.
  36. Daffner SD, Bunch J, An HS, et al. A novel bone graft has higher fusion rate than local autologous bone in stand-alone posterolateral fusion: a propensity score adjusted analysis. Spine J. 2020;20(suppl 9):S53-4. Abstract 108. doi:10.1016/j.spinee.2020.05.214
  37. Daffner SD, Bunch J, An HS, et al. Use of a novel allograft in single-and two-level posterolateral lumbar spinal fusion: two-year clinical and radiographic results from a prospective multicenter study. Spine J. 2020;20(suppl 9):S204. Abstract P122. doi:10.1016/j.spinee.2020.05.520
  38. Reficio DBM Putty [package insert]. Nashville, TN: DCI Donor Tissue Services Tissue Bank and Belgrade, MT: Xtant Medical; 2021.
  39. U.S. Food and Drug Administration, Center for Drug Evaluation and Research. OsteoSelect® Demineralized Bone Matrix Putty K130498 510(k) Summary, May 31, 2013.
  40. Schallenberger M, Lovick H, Locke J, Meyer T, Juda G. The effect of temperature exposure during shipment on a commercially available demineralized bone matrix putty. Cell Tissue Bank. 2016 Dec;17(4):677-687. doi: 10.1007/s10561-016-9578-1. Epub 2016 Aug 25. PMID: 27562800; PMCID: PMC5116037.
  41. Juda G, Rossmeier K. OsteoSelect® DBM putty performs substantially equivalent to iliac crest bone graft in rabbit posterolateral lumbar spine arthrodesis. Data on file, white paper.
  42. Priya G, Madhan B, Narendrakumar U, Suresh Kumar RV, Manjubala I. In vitro and in vivo evaluation of carboxymethyl cellulose scaffolds for bone tissue engineering applications. [ital] ACS Omega. 2021;6(2):1246-53. doi:10.1021/acsomega.0c04551 In references 2-5, Reficio DBM Putty is referred to and synonymous with OsteoSelect® Demineralized Bone Matrix Putty (Xtant Medical) Bioventus and the Bioventus logo are registered trademarks of Bioventus LLC. Reficio is a registered trademark of DCI Donor Services, Inc.
  43. Chaichana, K. L., Jallo, G. I., Dorafshar, A. H., & Ahn, E. S. (2013). Novel use of an ultrasonic bone-cutting device for endoscopic-assisted craniosynostosis surgery. Childs Nervous System, 29(7), 1163–1168. doi: 10.1007/s00381-013-2043-6
  44. Pakzaban, P. (2014), Ultrasonic Total Uncinectomy: A Novel Technique for Complete Anterior Decompression of Cervical Nerve Roots; Operative Neurosurgery; 10 (4): 535-541.
  45. Jensen WK. Misonix: Use of the BoneScalpel® in posterior lumbar fusions decreases the amount of allograft needed for fusion, thus reducing costs. [poster]. NASS 32nd Annual Meeti ng. 2017.
  46. Moon RDC, Srikandarajah N, Clark S, Wilby MJ, Pigott TD. Primary lumbar decompression using ultrasonic bone curette compared to conventional technique. Br J Neurosurgery. 2021;35(6):775-9. doi:10.1080/02688697.2020.1817321
  47. Nickele C, Hanna A, Baskaya MK. Osteotomy for laminoplasty without soft tissue penetration, performed using a harmonic bone scalpel: instrumentation and technique. J Neurol Surg A Cent Eur Neurosurg. 2013;74(3):183-6. doi:10.1055/s-0032-1328958
  48. Langella, S., Russolillo, N., D’Eletto, M., Forchino, F., Tesoriere, R. L., & Ferrero, A. (2015). Oncological safety of ultrasound-guided laparoscopic liver resection for colorectal metastases: a case–control study. Updates in Surgery, 67(2), 147–155. doi: 10.1007/s13304-015-0325-0
  49. Granick, Dispersion Risks Associated with Surgical Debridement Devices. Wounds 2017;29(10);E88-E91.
  50. American Burn Association Meeting. (2015). Additional data confirms reduction in blood loss with Misonix SonicOne in burn patients.
  51. Murphy, C. A., Houghton, P., Brandys, T., Rose, G., & Bryant, D. (2018). The effect of 22.5 kHz low-frequency contact ultrasound debridement (LFCUD) on lower extremity wound healing for a vascular surgery population: A randomised controlled trial. International Wound Journal, 15(3), 460–472. doi: 10.1111/iwj.12887
  52. Granick, M. (2017). Direct-Contact Low-Frequency Ultrasound Clearance of Biofilm From Metallic Implant Materials. Eplasty, 17(e13).
  53. “Ultrasonic Tangential Burn Excision Reduces Blood Loss.” Abraham P. Houng M.D., Sylvia J. Petrone M.D., Robin A. Lee M.D., Christina Lee M.D., Michael A. Marano M.D.